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Abstract. A Linear Programme (LP) involves a conjunction of linear constraints and has a well
defined dual. It is shown that if we allow the full set of Boolean connectives hn, k, |j applied to
a set of linear constraints we get a model which we define as a Logical Linear Programme (LLP).
This also has a well defined dual preserving most of the properties of LP duality. Generalisations
of the connectives are also considered together with the relationship with Integer Programming
formulation.
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1. Introduction

A Linear Programme (LP) involves maximising or minimising a linear function of
real numbers subject to a conjunction of linear constraints. It is well known that any
LP model (the Primal model) has a corresponding Dual model. The optimal
solutions to the primal and dual models are intimately related giving rise to the
duality and complementarity theorems (see e.g. Dantzig [5]).

In Section 2 we generalise the concept of an LP model by allowing any Boolean
function of the constraints. We can restrict ourselves to the complete set of
connectives and (n), or (k), not (|). Individual linear constraints can be regarded
as atomic propositions which get combined into compound propositions by these
connectives. We call the resultant model a Logical Linear Programme (LLP). Since
the negation of standard LP constraints results in strict inequality relations we have
to allow optimisation over open regions and must replace maximisation and
minimisation by the operations of supremum and infimum respectively. For practical
purposes (and when negation is not involved) we can approximate ‘,’ and ‘.’
constraints by ‘<’ and ‘>’ and the modification is not necessary. It is shown in
Section 4, every LLP has a natural dual and, in Section 5, that (with one restriction)
a corresponding duality theorem to that of LP holds.

A natural notation to use, which preserves the analogy with LP, is that of
´Minimax Algebra (see Carre [3] and Cuninghame-Green [4]).

In Section 3 we give some illustrative numerical examples and give their duals,
together with their solutions in Section 6.

In Section 7 Boolean Connectives are generalised and the dual model further
extended.
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The conventional way of dealing with logical conditions applied to linear
constraints is by the use of 0-1 integer variables. This results in a mixed integer
linear programme (MIP) which is a conjunction of constraints involving real and 0-1
variables. Such a model can obscure the logical relationships implicit in the original
problem which could be exploited in the solution process. Also a satisfactory
definition of a dual for a MIP does not yet exist. The relationship between LLPs and
MIPs is discussed in Section 8.

2. A logical linear programme

We define an LLP as a model of the form

z 5 Supremum O c xL j j
j[J

1P: subject to: L O a x ? r ? b , x [ Rij j i i jS D
j[J

where i [ I, r [ h<, >, 5 j.i

L is a compound proposition made up of the atomic propositions o a x ? r ? bj[J ij j i i

from the connectives ‘n’, ‘k’, and ‘|’.
If we wish to find the Infimum it is convenient to keep the model in the form

above and negate the objective function. Also it is convenient to restrict the x to bej

explicitly non-negative rather than do this by means of constraints. Variants to this
representation and the allowing of free (unrestricted) variables is straightforward.

LP is the special case in which L is n . ‘Supremum’ (Sup) is then equivalent toi

‘Maximum’ and ‘Infimum’ (Inf) is equivalent to ‘Minimum’.
We will allow L to be a general Boolean function involving the connectives

‘n’,‘k’ and ‘|’ and give the dual of P. However, it is sometimes convenient to
express L in Disjunctive Normal Form (DNF) or Conjunctive Normal Form (CNF).
In DNF a model takes the form

Supremum O c xj j
j[J

1PA: subject to: k n O a x ? r ? b , x [ Rkij j ki ki j
k i j[J

where i [ I , k [ K, r [ h<, >, 5, ,, .j.k ki

The strict inequalities ‘,’ and ‘.’ arise since

| O a x < b is represented as O a x . bj j j jS D
j j

| O a x > b is represented as O a x , bj j j jS D
j j

| O a x 5 b is represented as O a x , bkO a x . bj j j j j jS D
j j j
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In CNF a model takes the form

Supremum O c xj j
j[J

1PB: subject to: n k O a x ? r ? b , x [ Rkij j ki ki j
k i j

where i [ I , k [ K, r [ h<, >, 5, ,, .j.k ki

If a strict inequality is binding in an optimal solution (in the sense that if removed
the optimal solution would change) then it only makes sense to speak of the
supremum (infimum) of at least one of the variables with a positive (negative)
coefficient in a ‘,’ (‘.’) constraint, rather than the variable itself. While, in this
case, the model may have an optimal ‘solution’ in the sense of a finite supremum or
infimum of the objective there is no sense of all the variables having real-number
solution values giving rise to this objective value. A model will be said to be
‘feasible’ if there exist values of the variable, or if appropriate, their suprema or
infima satisfying the constraints.

If the ‘|’ connective does not arise then PA and PB are both forms of Disjunctive
Programmes and again ‘Supremum’ and ‘Infimum’ can be replaced by ‘Maximum’
and ‘Minimum’. In order to illustrate these forms of an LLP we consider a number
of examples.

3. Illustrative examples

EXAMPLE 1.

Supremum x 1 2x1 2

2x 1 3x < 81 2

Subject to: n3 4|(x 2 2x < 2)1 2

E1.1 k
3x 1 4x < 81 2

n3 4|(4x 2 x < 6)1 2

x , x > 01 2

This model is already in DNF. We can alternatively express all ‘atomic’ inequalities
strictly, giving the constraints as

2x 1 3x < 81 2

n3 4
2x 1 2x , 221 2

E1.2 k
3x 1 4x < 81 2

n3 4
24x 1 x , 261 2

x , x > 01 2
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or, in CNF as

2x 1 3x < 81 2

k3 43x 1 4x < 81 2

n

2x 1 3x < 81 2

k3 4
24x 1 x , 261 2

E1.3 n

2x 1 2x , 221 2

k3 43x 1 4x < 81 2

n

2x 1 2x , 221 2

k3 4
24x 1 x , 261 2

x , x > 01 2

EXAMPLE 2.

Maximise x 1 x1 2

2x 1 3x < 101 2

Subject to: k3 43x 2 x < 111 2

E2.1 n

x 1 2x < 61 2

k3 44x 1 x < 201 2

x , x > 01 2

This model is in CNF. Expressed in DNF the constraints become

2x 1 3x < 101 2

n3 4x 1 2x < 61 2

k

2x 1 2x < 101 2

n3 44x 1 x < 201 2
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E2.2 k

3x 2 x < 111 2

n3 4x 1 2x < 61 2

k

3x 2 x < 111 2

n3 44x 1 x < 201 2

x , x > 01 2

EXAMPLE 3.

Maximise x 1 x1 2

22x 1 x < 211 2

Subject to: n3 4x < 211

E3.1 k

2x 1 x < 21 2

k3 4x 2 x < 11 2

x , x > 01 2

This model is in DNF. In CNF the constraints are

2 2x 1 x < 211 2

k3 42x 1 x < 21 2

n

2 2x 1 x < 2 11 2

n3 4x 2 x < 21 2

E3.2 n

x < 2 11

k3 42x 1 x < 21 2

n

x < 211

k3 4x 2 x < 11 2

x , x > 01 2
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4. The dual of a logical linear program

´It is convenient to introduce the following notation based on Carre [3] and
Cuninghame-Green [4]

Min (a, b) is written a % b

Max (a, b) is written a % 9 b

Min (a ) is written O ai % i
i[I i[I

Max (a ) is written O ai %9 i
i[I i[I

Associated with each of the atomic constraints in P, PA and PB we have a suitably
restricted dual variable y .i

If r is < y > 0i i

If r is > y < 0i i

If r is , y > 0 and if Sup ( y ) . 0 then y ± Sup ( y )i i i i i

If r is . y < 0 and if Inf ( y ) , 0 then y ± Inf ( y )i i i i i

In the case of ‘,’ (‘.’) inequalities it only makes sense to speak of either the
dual values being zero or the supremum (infimum) of these dual values being
non-zero. In practice strict inequalities would be transformed to non-strict ones and
the problem would not arise.

The dual of P is defined recursively by mapping the Boolean function L into an
arithmetic function F by assuming L and L have already been mapped into F and1 2 1

F respectively.2

L nL → F 1 F1 2 1 2

L kL → F % F1 2 1 2

|L → 2Supremum F1 1

L is a Boolean function of the statements o a x ? r ? b for i [ I ., j[J ij j i i ,

F is an arithmetic function defined on a and b for i [ I ., ij i ,

If L maps to F we also define F9 obtained from F by replacing all occurrences of %

by %9.
The dual of P is defined as

z 5 Infimum F9(b y , b y , . . . , b y )F 1 1 2 2 m m

D: subject to: F(a y , a y , . . . , a y ) > c all j [ J1j 1 2j 2 mj m j

where we define I as h1, 2, . . . , mj. The y are restricted in the manner definedi

above. We now apply this definition to PA.
The dual of PA is
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Infimum O O b y%9 i kiS D
k[k i[Ik

DA: subject to: O O a y > c for all j [ J% kij ki j
k[K i[Ik

with the y suitably restricted as defined above.i

Alternatively the primal model P could be expressed as one of finding an
infimum. Then the dual D could be expressed as one of finding a supremum with the
sign conventions for the dual variables on ‘<’, ‘,’, ‘>’ and ‘.’ reversed and the
roles of ‘%’ and ‘%9’ interchanged.

5. The duality theorem

It is convenient first to prove the duality theorem for an LLP in the disjunctive form
PA as a Lemma. We later extend it to an LLP in any form.

LEMMA. One of the following three possibilities holds:
(i) PA and DA are both feasible and have the same optimal objective values.

(ii) One of the PA and DA is infeasible and the other is infeasible or unbounded.

1(iii) The constraints n O a x ? q ? b , x [ Rkij j ki ki j
i[Ik j

from PA are infeasible for a proper subset of K as well as the corresponding
(dual) constraints

O a y > c for all j [ Jkij ki j
i[Ik

from DA with the y restricted as in DA but the LLP is solvable whenki

restricted to the clauses in the complement of this subset of K.
(i) and (ii) correspond to the situation in LP.

Proof. We consider each value of k [ K in turn and solve PA with the
corresponding conjunction (‘clause’) of constraints.

If for a particular k, the inequalities are all non-strict, we have an LP model and
one of the following possibilities occurs:

(a) The model is solvable with optimal objective value z , for the primal andk
(k) (k)corresponding dual objectives and optimal solution values x and y for the] ]

primal and dual.
(b) The model is unbounded and the corresponding dual model is feasible.
(c) The model is infeasible and the corresponding dual model is also infeasible.
If, for a particular k, some of the inequalities are strict we replace ‘,’ inequalities
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by ‘<’ subtracting e from the RHS and ‘.’ inequalities by ‘>’ adding e to the RHS
where e is positive. The resultant LP model and its dual are then solved (as a
function of e). As e → 0 (but remains positive) the result will be (a), (b) or (c). In

(k) (k)case (a) some of the optimal values of x and y will involve positive linear] ]
combinations of e and some negative linear combinations. In the former case we
replace them by their suprema and in the latter case by their infima.

For the full model PA if case (b) occurs for any k, PA is unbounded and DA
infeasible (case (ii)). If case (c) occurs for some, but not all k and case (a) for all
other k then PA is solvable but DA is infeasible (case (iii)). If case (c) occurs for all
k then both PA and DA are infeasible (case (ii)). Otherwise the optimal objective
value of PA is

Maximum z 5 O Infimum O b y 5 Infimum O O b yk %9 ki ki %9 ki kiS Dk[K k[K i[I k[K i[Ik k

subject to O a y > c for all k [ K, j [ Jkij ki j
i[Ik

i.e. subject to Min O a y > c for all j [ Jkih ki jS Dk[K i[Ik

i.e. subject to O O a y > c for all j [ J% kij ki j
k[K i[Ik

i.e. case (i) holds. h

We now state and prove the duality theorem for a general LLP.

THEOREM. If P and D are both solvable (i.e. not infeasible or unbounded) they
have the same optimal objective values.

Proof. If P involves one (strict or non-strict) constraint then the result holds
trivially. Otherwise the form L of the constraints of P are a compound proposition of
one of the forms:

(a) L nL1 2

(b) L kL1 2

(c) |L1

where L , L are Boolean functions.1 2

We assume inductively that the theorem holds with L replaced by L or L alone.1 2

We refer to the corresponding models as P(L ), P(L ), D(L ) and D(L ) respectively.1 2 1 2

Case (a): L O a x ? r ? b , i [ I, ij j i i ,S D
j[J

can each be replaced by a set of linear (in)equalities defining the convex hull of
feasible solutions. The result then follows from the duality theorem of LP.

Case (b): If P(L) is solvable then P(L ), P(L ), D(L ) and D(L )1 2 1 2

must all be solvable by the results of the lemma putting L and L in DNF.1 2
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z 5 Max(z , z ) 5 Max(z , z ) 5 x %9 zL kL L L F F F F1 2 1 2 1 2 1 2

subject to: F (a y , y , . . . , a y ) > c1 1j 1 2 m j m ji

and F (a y , a y , . . . , a y ) > c for all j [ J2 m 11j 1 m 12j 2 m 1m j m 1m j1 1 1 2 1 2

i.e. subject to:

F (a y , a y , . . . , a y ) % F (a y , a y , . . . , a y )1 1j 1 2j 2 m j m 2 m 11j 1 m 12j m m 1m j m 1m1 1 2 1 1 2 1 2

> c , for all j [ Jj

where I 5 h1, 2, . . . , m j, I 5 hm 1 1, m 1 2, . . . , m 1 m j .1 1 2 1 1 1 2

Hence z 5 z .L kL F %F1 2 1 2

In case (c) we can use De Morgan’s laws to ‘push’ the negations down to the
level of individual constraints. The result then holds by virtue of cases (a) and (b).

The logical formulation D can be generalised to allow atomic constraints
involving generalised addition (% and %9) as well as conventional addition (and
subtraction). If we consider the objective as one of finding a supremum we must
confine the % operation (min) to the objective function and ‘>’ and ‘.’ constraints
and the %9 operation (max) to ‘<’ and ‘,’ constraints.

For simplicity we will take a model in DNF and will convert all constraints to the
‘<’ form (possibly replacing variables by their suprema or infima). The model

Supremum O O c x% jk jk
k j

subject to: k n O O a x < b for all i, ,%9 i, jk jk i,
i, k j

x > 0jk

then has dual

infimum O O b y%9 i, i,
i,

subject to: O O a y > c for all j, k% i, jk i, jk
i,

y > 0 .i,

The duality theorem given above then still holds.

6. Duals of illustrative examples

EXAMPLE 1.

Infimum ((8y 2 2y9 ) %9 (8y 2 6y9 ))1 2 3 4

subject to: (2y 2 y9 ) % (3y 2 4y9 ) > 11 2 3 4
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F1.1

(3y 1 2y9 ) % (4y 1 y9 ) > 21 2 3 4

y , y9 , y , y9 > 01 2 3 4

y0 and y0 represent the infima of y and y respectively with the restriction that if2 4 2 4

these infima are strictly positive then y and y do not attain these values.2 4

The optimal solution to E1.1 is

22
]x9 (i.e. infimum (x )) 51 1 7

4
]x0 (i.e. supremum (x )) 52 2 7

30
]Objective 5 7

The optimal solution to F1.1 is

4
]y 51 7

1
]y9 (i.e. infimum ( y )) 52 2 7

y and y9 (i.e. infimum ( y )) can take any value in the polytope with vertices3 4 4
1 9 2 15 39 14
] ] ] ] ] ]( , 0), ( , ), ( , 0) and ( , ).2 19 19 28 49 49

30
]Objective 5 7

The dual of E1.2 is similar to F1.1 but y and y are negated.2 4

The dual of E1.3 is

Infimum ((8y % 8y ) 1 (8y %9 2 6y9 ) 1 (22y9 %9 8y ) 1 (22y9 %9 6y9 ))1 2 3 4 5 6 7 8

subject to: (2y % 3y ) 1 (2y % 24y9 ) 1 (2y9 % 3y ) 1 (2y9 % 24y9 ) > 11 2 3 4 5 6 7 8

F1.3 (3y % 4y ) 1 (3y % y9 ) 1 (2y9 % 4y ) 1 (2y9 % y9 ) > 21 2 3 4 5 6 7 8

y , y , y , y9 , y9 , y , y9 , y9 > 01 2 3 4 5 6 7 8

with the restriction that if any of y , y , y , y are strictly positive they do not attain4 5 7 8

their infima.
The optimal solution to E1.3 is the same as for E1.1.
F1.3 has alternative optimal solutions (essentially equivalent to that for F1.1 with

variables renamed and duplicated).
y9 1 y and y9 1 y9 can take any values in the polytope defined for y and y9 in2 6 4 8 3 4

F1.1

30
]Objective 5 7
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EXAMPLE 2.
The dual is

Minimise ((10y %9 11y ) 1 (6y %9 20y ))1 2 3 4

subject to: (2y % 3y ) 1 ( y % 4y ) > 11 2 3 4

F2.1 (3y % 2y ) 1 (2y % y ) > 11 2 3 4

y , y , y , y > 01 2 3 4

The optimal solution of E2.1 (and E2.2) is

x 5 0, x 5 20, objective 5 201 2

The optimal solution of F2.1 is

y 5 0, y 5 0, y 5 0, y 5 1, objective 5 201 2 3 4

The dual of E2.2 is

Minimise ((10y 1 6y ) %9 (10y 1 20y ) % (11y 1 6y ) % (11y 1 20y ))1 2 3 4 5 6 7 8

Subject to: (2y 1 y ) % (2y 1 4y ) % (3y 1 y ) % (3y 1 4y ) > 11 2 3 4 5 6 7 8

F2.2 (3y 1 2y ) % (3y 1 y ) % (2y 1 2y ) % (2y 2 y ) > 11 2 3 4 5 6 7 8

y , y , y , y , y , y , y , y > 01 2 3 4 5 6 7 8

This has alternatives, but essentially the same, optimal solution as F2.1 with
variables renamed and duplicated such that

1 1 1 4
] ] ] ]y 5 , y 5 0, y 5 , y 5 0, y 5 , y 5 , y 5 0 ,1 2 3 4 5 6 72 2 7 7

Objective 5 20

EXAMPLE 3.
The dual E3.1 is

Minimise ((2y 2 y ) % (2y 1 y ))1 2 3 4

Subject to: (22y 1 y ) % (2y 1 y ) > 11 2 3 4

F3.1 2y % ( y 2 y ) > 11 3 4

y , y , y , y > 01 2 3 4

The optimal solution of E3.1 (and E3.2) is

x 5 0, x 5 2, Objective 5 21 2

F3.1 is infeasible
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The dual of E3.2 is

Minimise ((2y %9 2y ) 1 (2y %9 2y ) 1 (2y %9 2y ) 1 (2y %9 y ))1 2 3 4 5 6 7 8

Subject to: (22y % 2y ) 1 (22y % y ) 1 ( y % 2y ) 1 ( y % y ) > 11 2 3 4 5 6 7 8

F3.2 ( y % y ) 1 ( y % 2 y ) 1 y 2 y > 11 2 3 4 6 8

y , y , y , y , y , y , y , y > 01 2 3 4 5 6 7 8

which is again infeasible.

7. Generalised connectives

All Boolean functions can be expressed using the complete set of connectives
hn, k, |j. Other connectives can also be mapped into arithmetic functions to
enable duals to LLPs to be constructed.

A → A corresponds to Min (2a , a )1 2 1 2

A ; A corresponds to 2ua 1 a u1 2 1 2(↔)

A ↓A (nor) corresponds to 2a 2 a1 2 1 2

A u A (nand) corresponds to Min (2a , 2a )1 2 1 2

It is shown in McKinnon and Williams [7] that any LLP can conveniently be
represented using a nested expression of ‘ge’ predicates applied to LP constraints.
The predicate

ge(r : P , P , . . . , P ) means ‘at most r of P , P , . . . , P are true’1 2 n 1 2 n

If P corresponds to the constraint o a x ? < ? b the dual arithmetic functioni j ij j i

corresponding to ge(r : P , P , . . . , P ) is1 2 n

O (a 1 a 1 ? ? ? 1 a )% i1 i2 ir
(i ,i ,...,i )1 2 r

[ur

where u is the set of all permutations of r elements from h1, 2, . . . , nj.r

Defining this function as F we can then apply it in a nested fashion to define ther

dual of LLP expressed using nested ge predicates.
For example if we have the model

Supremum O c xj j
j[J

subject to: (P nP )↔(P nP )1 2 3 4

x > 0j

where P are linear (in)equalities the constraint can be written asi

ge(2 : ge(1 : | P , | P , ge(2 : P , P ))1 2 3 4

ge(1 : |P , |P , ge(2 : P , P )))3 4 1 2
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The dual model would then be

Infimum F 9(F 9(2b y0 , 2b y0 , F 9(b y0 , b y0 )),2 1 1 1 2 2 2 3 3 4 4

subject to: F 9(2b y0 , 2b y0 , F 9(b y0 , b y0 )))1 3 3 4 4 2 1 1 2 2

F (F (2a y0 , 2a y0 , F (a y0 , a y0 )) ,2 1 1j 1 2j 2 2 3j 3 4j 4

F (2a y0 , 2a y0 , F (a y0 , a y0 ))) > c all j [ J1 3j 3 4j 4 2 1j 1 2j 2 j

y0 , y0 , y0 , y0 > 01 2 3 4

F 9 and F 9 are F and F with the operation % replaced by %9.1 2 1 2

8. Relations with other work

The idea of disjunctive constraints goes back to Balas [1] who in Balas [2] defines
the dual of a Disjunctive Programme as an LP. This is done by expressing it in DNF
and converting the ‘Minimax’ objective of DA into a linear form. The constraints of
DA are dealt with by repeating all the linear expressions which are arguments of
o . A regularity condition is imposed to disallow models in DNF where one, but%

not all conjunctive clauses are both primal and dual infeasible with at least one
primal clause leading to a finite optimal solution. In this way the full correspondence
with LP duality is preserved.

It is pointed out in Williams [8] that by taking the dual of this dual formulation
one obtains an alternative to the traditional MIP formulation of a disjunction. This
formulation again goes back to Balas [1] and is explained in Jeroslow [6]. If the full
disjunctive formulation is given then a ‘sharp’ formulation is obtained guaranteeing
an integer solution to an otherwise LP model.

The regularity condition mentioned above corresponds to the condition of
demanding that all the polytopes corresponding to the conjunctive clauses, when the
model is in DNF, have the same recession directions. This is shown by Jeroslow [6]
to be a necessary and sufficient condition for a Disjunctive Programme to have a
MIP formulation.
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